Preliminary communication

Studies on 3,6-anhydro-osazones of higher monosaccharides: characterization and anomeric configuration

MOHAMMED A. E. SALLAM

Department of Chemistry, Faculty of Science, Alexandria University, Alexandria (Egypt) (Received September 17th, 1979; accepted for publication, October 20th, 1979)

Monosaccharide 3,6-anhydro-osazones $^{1-3}$ are C-aldofuranosyl compounds used as precursors for the synthesis of C-nucleoside analogs that are needed for biochemical investigations and antibiotic or antiviral research They are readily prepared by dehydrative cyclization of monosaccharide osazones in refluxing, methanolic sulfuric acid solution. However, they have not been used extensively for the synthesis of C-nucleoside analogs, because of uncertainty as to their anomeric configuration 6 .

In the present communication, a series of 3,6-anhydro-osazones from higher monosaccharides was investigated by thin-layer chromatography (t.l.c.), and their anomeric configuration was ascertained by circular dichroism (c.d.), and high-resolution, n.m.r. spectroscopy. Monitoring of the reaction by t.l.c. indicated the formation of two isomeric, 3,6-anhydro-osazone derivatives from higher monosaccharide osazones having trans-3,4-hydroxyl groups. The preponderant anomer was formed with inversion at C-3 of the starting osazone (C-1 of the aldosyl group formed), and the minor, without inversion. Two such anomers were detected from the reaction of D-arabino-hexulose phenylosazone, but the proportion of the minor anomer is usually higher from higher monosaccharide osazones than from hexulose phenylosazones. Saccharide phenylosazones having cis-3,4-hydroxyl groups produce a single anomer, without inversion of the configuration of C-3 of the starting osazone. This finding permits rational development of a synthesis of C-nucleoside analogs from these compounds.

The formation of two isomeric 3,6-anhydro-osazones from higher monosaccharides having trans-3,4-hydroxyl groups, and only one isomer from those having cis-3,4-hydroxyl groups, supports the mechanism suggested by El Khadem⁶ for anhydro-osazone formation. The preponderance of the sterically favored 3,6-anhydro-osazone isomer having the cis-3,4 arrangement is in accord with an empirical rule⁸ for anhydro-osazone formation. The C-3 atom tends to have the same configuration as C-4, irrespective of the configuration of C-3 in the starting osazone. The reason for the increase in the proportion of the sterically disfavored isomer (having trans-3,4-hydroxyl groups) from the dehydration of higher monosaccharide phenylosazones than from the corresponding hexulose derivatives is at present unclear.

D-galacto-Heptulose phenylosazone (1) produces two isomeric 3,6-anhydro-osazones, 2 and 3 (see Scheme 1), in the ratio of 3:2. Anomer 2 has m.p. 234° ; R_F 0.44 (solvent A, 3:1-benzene—ethanol), 0.48 (solvent B, 2:1:1 benzene—chloroform—ethanol).

Scheme 1

Its c.d. spectrum showed a positive Cotton-effect at 390—420 nm of opposite sign to that of the Cotton effect of the precursor D-galacto-heptulose phenylosazone, indicating that the α -D-lyxo configuration is formed, by inversion of C-3 in the Fischer projection formula 1. The second isomer, 3, has m.p. 246°; R_F 0.37 (solvent A), 0.45 (solvent B). Its c.d. spectrum showed a negative Cotton-effect at 340—390 nm, identical in sign to that of the Cotton effect of the precursor osazone 1, supporting the β -D-lyxo configuration.

D-altro-Heptulose phenylosazone (4) affords two 3,6-anhydro osazone derivatives, 5 and 6, in the ratio of 5:1. Compound 5 has m.p. $160-162^{\circ}$; R_F 0.64 (solvent A), 0.74 (solvent B). Its c.d. spectrum showed a negative Cotton-effect at 338-440 nm, opposite in sign to that of the precursor, D-altro-heptulose phenylosazone (4), which is in accord with the β -D-ribo configuration. The second isomer, 6, has m.p. 245° ; R_F 0.67 (solvent A). 0.76 (solvent B). Its c.d. spectrum showed a positive Cotton-effect, at 338-378 nm, having the same sign of Cotton effect as the precursor phenylosazone 4, indicating the α -D-ribo configuration.

D-gluco-Heptulose phenylosazone (7) produces two isomers, 8 and 9, in the ratio of 3:2. Anomer 8 has m.p. $168-170^{\circ}$; R_F 0.56(solvent A), 0.56 (solvent B). Its 360-MHz, high-resolution, n.m.r. spectrum showed the anomeric proton at δ 4.32 ($J_{1',2'}$ 1.0 Hz), indicating the trans arrangement for H-1 and H-2 of the glycosyl group. This α -D-configuration is supported by the high, positive, optical rotation, $[\alpha]_D^{12} + 110^{\circ}$ (c 0.25, acetone), which is in agreement with the α -D-arabino configuration. The second anomer, 9, has m.p. $187-188^{\circ}$; R_F 0.36 (solvent A), 0.33 (solvent B). Its high-resolution, n.m.r. spectrum (360 MHz) showed the anomeric proton at δ 4.01 ($J_{1',2'}$ 9.43 Hz), consistent with the cis arrangement for H-1 and H-2. This β -D configuration is supported by the negative rotation, $[\alpha]_D^{22} -27.8^{\circ}$ (c 1.0, acetone), which is in accord with the β -D-arabino configuration of the glycosyl group.

However, 7-deoxy-L-manno-heptulose phenylosazone (10) produces a single isomer (11), having the opposite configuration at C-3. It has m.p. $212-215^{\circ}$, $\left[\alpha\right]_{D}^{22}-108.2^{\circ}$ (c 1.0 acetone); R_F 0.67 (solvent A), 0.61 (solvent B). Its n.m.r. spectrum at 90 MHz showed the anomeric proton (C-3 proton in the osazone) at δ 4.58, having $J_{1',2'}$ 6.76 Hz. The C-4 proton appeared at δ 4.0, shifted to lower field than H-3, which appeared at δ 3.88. The methyl protons appeared at δ 1.32. The β -L configuration of the aldosyl group was assigned from the deshielding of the C-4 proton and the shielding of the methyl protons 10,11 , which was supported by the high, negative rotation.

D-glycero-D-gulo-Octulose phenylosazone (12) also afforded a single anomer (13), having a configuration the opposite of that of C-3 of the precursor osazone. It has m.p. 192° ; R_F 0.55 (solvent A), 0.31 (solvent B). The configuration of C-3 was determined^{8,12} from its c.d. spectrum. It was, therefore, the β -D-glucosyl derivative.

All of these compounds showed in their high-resolution, mass spectra the exact molecular ions in agreement with the calculated values.

ACKNOWLEDGMENTS

The author thanks Professor H. S. El Khadem for his keen interest, and Professor R. L. Whistler for making facilities available for some of these measurements.

REFERENCES

- 1 O. Diels and R. Meyer, Ann., 519 (1935) 152-164.
- 2 O. Diels, R. Meyer, and O. Onnen, Ann., 525 (1935) 94-117.
- 3 H. El Khadem, Z. M. El Shafei, and M. A. E. Sallam, Carbohydr. Res., 18 (1971) 147-150.
- 4 M. A. E. Sallam, Tetrahedron Lett., (1979), in press.
- 5 R. J. Suhadolnik, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970.
- 6 H. El Khadem, Carbohydr. Res., 23 (1972) 311-315.
- 7 H. El Khadem, E. Schrier, G. Stohr, and E. Hardegger, Helv. Chim. Acta, 35 (1952) 993-999.
- 8 L. Mester, H. El Khadem, and G. Vass, Tetrahedron Lett., (1969) 4135-4138.
- 9 R. U. Lemieux and D. R. Lineback, Annu. Rev. Biochem., 32 (1963) 155-184.
- 10 H. B. Sinclair and R. T. Sleeter, Tetrahedron Lett., (1970) 833-836.
- 11 C. Laffite, A.-M. N. Phuoc Du, F. Winternitz, R. Wylde, and F. Pratviel-Sosa, Carbohydr. Res., 67 (1978) 91-103.
- 12 L. Mester, Chimia, 23 (1969) 133-141.